On the (2,1)-extendability of ternary linear codes

Yuri Yoshida (Joint work with Tatsuya Maruta)

Department of Mathematics and Information Sciences Osaka Prefecture University

Overview

The (2,1)-extendability of $[n, k, d]_3$ codes with gcd(3, d) = 1 is investigated geometrically for $3 \le k \le 5$.

Contents

- 0. Introduction
- 1. Geometric approach
- 2. (2,1)-extendability of ternary linear codes
- 3. Focal points and focal hyperplanes
- 4. Proof of Theorem 6

0. Introduction

C: $[n, k, d]_3$ code, $k \ge 3$, gcd(d, 3) = 1. The diversity (Φ_0, Φ_1) of C is given as

$$\Phi_0 = \frac{1}{2} \sum_{\substack{3 \mid i, i \neq 0}} A_i, \quad \Phi_1 = \frac{1}{2} \sum_{\substack{i \neq 0, d \pmod{3}}} A_i.$$

$$\begin{split} \mathcal{D}_k &= \text{the set of all possible diversities of} \\ & [n,k,d]_3 \text{ codes.} \\ \mathcal{D}_k^* &= \{(\theta_{k-2},0),(\theta_{k-3},2\cdot 3^{k-2}),\\ & (\theta_{k-2},2\cdot 3^{k-2}),(\theta_{k-2}+3^{k-2},3^{k-2})\},\\ & (\theta_{k-2},2\cdot 3^{k-2}),(\theta_{k-2}+3^{k-2},3^{k-2})\},\\ \text{where } \theta_j &= (3^{j+1}-1)/2.\\ \mathcal{D}_k^+ &= \mathcal{D}_k \setminus \mathcal{D}_k^*. \end{split}$$

Theorem 1 (Maruta, 2005). C is extendable if $(\Phi_0, \Phi_1) \in \mathcal{D}_k^*$.

Probrem.

Is \mathcal{C} (2,1)-extendable when \mathcal{C} is not extendable?

We consider this problem for $3 \le k \le 5$. (See Proceedings for k = 6)

Diversities of non-extendable ternary codeskdiversity3(4,3)4(13,9), (10,15), (16,12)5(40,27), (31,45), (40,36), (40,45), (49,36)6(121,81), (94,135), (121,108), (112,126), (130,117), (121,135), (148,108)

How about (2, 1)-extendability of such codes?

1. Geometric approach

 \mathcal{C} : $[n, k, d]_3$ code, $k \geq 3$ $G = [g_1, \cdots, g_k]^{\mathsf{T}}$: a generator matrix of \mathcal{C} $\Sigma := PG(k-1,3)$: the projective space of dimension k-1 over \mathbb{F}_3 For $P = P(p_1, \ldots, p_k) \in \Sigma$ we define the weight of P with respect to C, denoted by $w_{\mathcal{C}}(P)$, as $w_{\mathcal{C}}(P) = wt(\sum_{i=1}^{k} p_i g_i).$

Let

$$F_d = \{P \in \Sigma \mid w_{\mathcal{C}}(P) = d\},$$

$$F_0 = \{P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv 0 \pmod{3}\},$$

$$F_1 = \{P \in \Sigma \mid w_{\mathcal{C}}(P) \not\equiv 0, d \pmod{3}\},$$

$$F_2 = \{P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv d \pmod{3}\} (\supset F_d),$$

$$F = F_0 \cup F_1, F_e = F_2 \setminus F_d.$$

Then $(\Phi_0, \Phi_1) = (|F_0|, |F_1|).$

2. (2,1)-extendability of ternary linear codes

Lemma 2. C is (2, 1)-extendable $\Leftrightarrow \exists (k-3)$ -flat $\subset F \cup F_e$ $\Leftarrow \exists (k-3)$ -flat $\subset F = F_0 \cup F_1$.

Every non-extendable $[n, 3, d]_3$ code C with gcd(3, d) = 1 has diversity (4, 3). C is (2, 1)-extendable since $F \neq \emptyset$. $\begin{aligned} \Pi_t : \text{ a } t\text{-flat in } \Sigma. \\ \text{The } \textit{diversity of } \Pi_t \text{ is } (\varphi_0^{(t)}, \varphi_1^{(t)}) \\ \text{ where } \varphi_s^{(t)} &= |\Pi_t \cap F_s|, \ s = 0, 1. \\ \Pi_t \text{ is called a } (\varphi_0^{(t)}, \varphi_1^{(t)})_t \text{ flat.} \\ (i, j)_1 \text{ flats, } (i, j)_2 \text{ flats, } (i, j)_3 \text{ flats are called} \\ (i, j)\text{-lines, } (i, j)\text{-planes, } (i, j)\text{-solids, respectively.} \end{aligned}$

 $c_{i,j}^{(t)}$: the number of $(i,j)_{t-1}$ flats in Π_t . The list of $c_{i,j}^{(t)}$'s is called its *spectrum*.

Table 1.									
$\varphi_0^{(2)}$	$\varphi_1^{(2)}$	$c_{1,0}^{(2)}$	$c_{0,2}^{(2)}$	$c_{2,1}^{(2)}$	$c_{1,3}^{(2)}$	$c_{4,0}^{(2)}$			
4	0	12	0	0	0	1			
1	6	2	9	0	2	0			
4	3	4	3	6	0	0			
4	6	0	3	6	4	0			
7	3	1	0	9	1	2			
4	9	0	0	0	12	1			
13	0	0	0	0	0	13			

 $\exists (i, j)$ -line $\Rightarrow \exists (3i + 1, 3j)$ -plane. (4, 3) and (4, 6) are new.

Table 2.								
$\varphi_0^{(3)}$	$\varphi_1^{(3)}$	$(3) c_{4,0}^{(3)}$	$c_{1,6}^{(3)}$	$(3) c_{4,3}$	$^{(3)}_{c_{4,6}}$	$^{(3)}_{c_{7,3}}$	$(3) c_{4,9}$	$c_{13,0}^{(3)}$
13	0	39	0	0	0	0	0	1
4	18	2	36	0	0	0	2	0
13	9	4	3	27	0	6	0	0
10	15	0	10	15	15	0	0	0
16	12	0	0	12	12	16	0	0
13	18	0	3	0	27	6	4	0
22	9	1	0	0	0	36	1	2
13	27	0	0	0	0	0	39	1
40	0	0	0	0	0	0	0	40

Theorem 3. Let C be an $[n, k, d]_3$ code with k = 3 or 4, gcd(3, d) = 1. Then C is (2, 1)-extendable.

Theorem 4. Let C be an $[n, 5, d]_3$ code with diversity $(\Phi_0, \Phi_1) \neq (40, 36)$, gcd(3, d) = 1. Then C is (2, 1)-extendable.

Table 3.

$\varphi_0^{(4)}$	$\varphi_1^{(4)}$	$c_{13,0}^{(4)}$	$c_{4,18}^{(4)}$	$c_{13,9}^{(4)}$	$c_{10,15}^{(4)}$	$c_{16,12}^{(4)}$	$c_{13,18}^{(4)}$	$c_{22,9}^{(4)}$	$c_{13,27}^{(4)}$	$c_{40,0}^{(4)}$
40	0	120	0	0	0	0	0	0	0	1
13	54	2	117	0	0	0	0	0	2	0
40	27	4	3	108	0	0	0	6	0	0
31	45	0	10	15	81	0	15	0	0	0
40	36	0	0	40	36	45	0	0	0	0
40	45	0	0	0	36	45	40	0	0	0
49	36	0	0	12	0	81	12	16	0	0
40	54	0	3	0	0	0	108	6	4	0
67	27	1	0	0	0	0	0	117	1	2
40	81	0	0	0	0	0	0	0	120	1
121	0	0	0	0	0	0	0	0	0	121

Theorem 5. Let C be an $[n, 5, d]_3$ code with diversity (40, 36), gcd(3, d) = 1. Then C is (2, 1)-extendable iff either (a) $\exists l:(1, 0)$ -line, $l \subset F_0 \cup F_e$, or (b) $\exists R_1, R_2, R_3 \in F_e$ s.t. $\langle R_i, R_j \rangle$:(0, 2)-line.

Example. Let \mathcal{C} be a $[15, 5, 8]_3$ code with a generator matrix

whose weight distribution is $0^{1}8^{60}9^{40}10^{62}11^{20}12^{40}13^{10}14^{10}$ (diversity (40,36)).

 $w_{\mathcal{C}}(R_1) = 11, \ w_{\mathcal{C}}(R_2) = 14, \ w_{\mathcal{C}}(R_3) = 11.$ $w_{\mathcal{C}}(R_i) \equiv 2 \equiv d = 8 \pmod{3}.$ $w_{\mathcal{C}}(Q_1) = 10, \ w_{\mathcal{C}}(Q_2) = 10 \cdots w_{\mathcal{C}}(Q_j) \equiv 1 \pmod{3}.$ Since $V(x_0 + 2x_1 + 2x_2 + x_3) \cap V(x_0 + x_2 + 2x_4) = \langle R_1, R_2, R_3 \rangle$, by adding the columns $(1, 2, 2, 1, 0)^T$ and $(1, 0, 1, 0, 2)^T$ to G, we get a (2, 1)-extension of C whose weight distribution is

 $0^{1}9^{38}10^{56}11^{46}12^{34}13^{30}14^{26}15^{8}16^{4}$.

Remark.

We have no example of an $[n, 5, d]_3$ code with diversity (40,36), gcd(3, d) = 1, which is not (2,1)-extendable. Theorem 6. Let C be an $[n, 5, d]_3$ code with diversity (40, 36), gcd(3, d) = 1. Then C is (2, 1)-extendable if $A_d \leq 50$.

To prove this, we need: (1) In $(40,36)_4$ flat, any (10,15)-solid has the unique focal point from F_1 and any (16,12)solid has the unique focal point from F_2 . (2) Every 20-cap in PG(4,3) is either a Γ -cap or Δ -cap.

3. Focal points and focal hyperplanes

For i = 1, 2, a point $P \in F_i$ is called a *focal point* of a hyperplane H (or P is *focal to* H) if the following three conditions hold:

Such a hyperplane H is called a *focal hyper*plane of P (or H is *focal to* P).

Theorem 7

Let Π_t be a *t*-flat with new diversity. Then, for i = 1, 2, any point of $\Pi_t \cap F_i$ has a focal (a, b)-hyperplane in Π_t for some new (a, b). **Note.**

Let (2,1) and (0,2) be new in the types of lines for convenience.

Lemma 8. Let δ be a (4,3)-plane. Then, every point of $\delta \cap F_1$ and of $\delta \cap F_2$ has a focal (0,2)-line and a focal (2,1)-line, respectively, and vice versa.

Lemma 9. Let δ be a (4,6)-plane. Then, every point of $\delta \cap F_1$ and of $\delta \cap F_2$ has a focal (2,1)-line and a focal (0,2)-line, respectively, and vice versa. Lemma 10. Let δ be a (16, 12)-solid. Then, every point of $\delta \cap F_1$ and of $\delta \cap F_2$ has a focal (4,3)-plane and a focal (4,6)-plane, respectively, and vice versa.

Lemma 11. Let Π be a $(40, 36)_4$ flat. Then, every point of $\Pi \cap F_1$ and of $\Pi \cap F_2$ has a focal (10, 15)-solid and a focal (16, 12)-solid, respectively, and vice versa.

4. Proof of Theorem 6.

Assume C is not (2, 1)-extendable. Then no three points of F_e are collinear by Theorem 5.

 F_e forms a cap and we have $|F_e| \leq 20$ since the largest size of a cap in PG(4,3) is 20.

Every 20-cap in PG(4,3) is either a Γ -cap or a Δ -cap (Pellegrino, 1974).

 $\Delta\text{-}cap = \{\bullet\} \cup \{\bullet\} \cup \{\bullet\} \cup \{\bullet\} \cup \{\bullet\}$

We only consider the case when F_e is a 20cap of type Γ . (See Proceedings for the case when F_e is a 20-cap of type Δ .)

Case 1: $V \in F_0 \Rightarrow VP_i = (1, 0)$ -line

Actually, there are exactly six (1, 0)-lines through V in the $(40, 36)_4$ flat Σ , a contradiction.

H:solid

Case 2: $V \in F_1 \Rightarrow VP_i = (0, 2)$ -line

H:solid

H': the focal (10, 15)-solid of V

E': the projection of E from V onto H' if $H \neq H'$.

V is point of $F_1 \Rightarrow VP_i = (0, 2)$ -line

In *H'*, at most $c_{1,6}^{(3)} + c_{4,6}^{(3)} = 25$ planes meet *E'* in four points, a contradiction.

Case 3: $V \in F_2 \Rightarrow VP_i = (1, 0)$ -line

Н

Thank you for your attention!