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Overview

The (2,1)-extendability of [n,k,d]3 codes
with gcd(3,d) = 1 is investigated geometri-
cally for 3 < k < 5.
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0. Introduction

C: [n,k,d]3 code, k> 3, gcd(d,3) = 1.
The diversity (g, P1) of C is given as

1 1
Po=— X A P1=— > Aj.
2 34,70 2 i#£0,d (mod 3)



D, = the set of all possible diversities of
[n, k,d]3 codes.
D} = {(0x_2,0), (0y_3,2 - 3872),
(Op—2,2-3572), (6p_o + 372,352},
where 6; = (37171 —1)/2.
D =D, \ Di.



Theorem 1 (Maruta, 2005).
C is extendable if (Pg,P1) € Dy.

Probrem.
Is C (2,1)-extendable when C is not extend-

able?

We consider this problem for 3 < k < 5.
(See Proceedings for kK = 6)



Diversities of hon-extendable ternary codes

diversity

(4,3)
(13,9),(10,15), (16, 12)
(40,27), (31, 45), (40, 36), (40, 45), (49, 36)
(121,81), (94, 135), (121,108), (112, 126),
(130,117), (121, 135), (148, 108)

o O b W &

How about (2, 1)-extendability of such codes?



1. Geometric approach

C: [n,k,d]3 code, k>3

G =191, - ,9:] ': a generator matrix of C

> :=PG(k—1,3): the projective space of di-
mension k£ — 1 over F3

For P = P(pq,...,pr) € X we define the weight
of P with respect to C, denoted by wg(P), as

k
we(P) = wi( X pigi).



Fy = {PeXx | we(P)=d},

Fo = {Pex | we(P)=0 (mod 3)},

Fi. = {PeX | we(P)#0,d (mod3)},

Fro = {PeX | we(P)=d (mod3)} (D Ey),
F = FQUF,, F. = F, )\ Fy.

Then (Pg,P1) = (|Fol, | F1l)-



2. (2,1)-extendability of ternary linear
codes

Lemma 2. C is (2,1)-extendable
< d(k — 3)-flat C FF U Fe
< d(k — 3)-flat C F = Fy U F}.

Every non-extendable [n,3,d]3 code C with
gcd(3,d) = 1 has diversity (4,3).
C is (2, 1)-extendable since F # 0.



[y . a t-flat in 2.

The diversity of My is (o), p (D)
where @) = [N, N Fy

M, is called a (oM, p1 (D), flat.

(7,7)1 flats, (¢, 5)- flats, (4, 5)3 flats are called

(7, 7)-lines, (4, j)-planes, (i, j)-solids,respectively.

, s =0, 1.

cgfj): the number of (4,45);_1 flats in ;.

The list of c§f3>'s is called its spectrum.



Table 1.
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(4, 7)-line = 3(37 + 1,375)-plane.

(4,3) and (4,6) are new.
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39

13

36

18

13
10
16
13
22
13
40

O
16

15
12

15
12

10
O

O
O

15
12
18

O

39

27

40




(4, 3)-plane (13,9)-solid

i

O : apoint of Fo
O : apoint of Fi
@ : apoint of F2




Theorem 3. Let C be an [n, k, d]3 code with
k=3 or 4, gcd(3,d) = 1. Then C is (2,1)-

extendable.

Theorem 4. Let C be an [n, 5, d]s code with
diversity (CD(),Cbl) 7 (40,36), ng(3,d) = 1.
Then C is (2,1)-extendable.



Table 3.

4 4 4 4 4 Z 4 ] ]
0o 01 Cgs),o 02,1)8 Cg3),9 Cgo),15 656),12 Cgs),ls ng),9 653),27 Cgto),o

40 O 120 O O O O O O O 1
13 54 2 117 O O O O O 2 O
40 27 4 3 108 O O O 6 O O
31 45 O 10 15 31 O 15 O O O
40 36 O O 40 36 45 O O O O
40 45 O O O 36 45 40 O O O
49 36 O O 12 O 31 12 16 O O
40 54 0 3 O O 0 108 6 4 O
o7 27 1 O O O o) O 117 1 2
40 31 O O O O O O O 120 1
121 O 0 O O O O O O O 121




Theorem 5. Let C be an [n, 5, d]s code with
diversity (40,36), gcd(3,d) = 1.

Then C is (2, 1)-extendable iff either

(a) 31:(1,0)-line, | C FyU Fg, or

(b) dR1, R, R3 € Fe s.t. (R;, Rj):(0,2)-line.
(a) (EI)



Example. Let C be a [15,5,8]3 code with a

generator matrix

Q

|
IOOOOI—*I
OO O O+~ O
OO O OO
O O O O
= O O O O
N O N = N
N O O~
N = = NN
N M B = B
OO O NN
O NN = O
N NV = O O
N N = N =
O N O -
= N O = O

whose weight distribution is
01806094071(06211201240131071410 (diversity (40,36)).



(b)
R1=(0,0,1,1,1)

R=(1,2,1,2,2) R3=(1,1,0,0,1)
we(R1) = 11, we(Ry) = 14, we(R3) = 11.
we(R;)) =2=d=8 (mod 3).
we(Q1) = 10, we(Q2) =10---. we(Q;) =1 (mod 3).



Since V(xg 4+ 221 + 220 + 23) N V(zg + 25 + 224) =
(R1, R, R3), by adding the columns (1,2,2,1,0)T and
(1,0,1,0,2)T to G, we get a (2,1)-extension of C

whose weight distribution is
0193810°6114612341330142615816%

Remark.
We have no example of an [n, 5, d]3 code with
diversity (40,36), gcd(3,d) = 1, which is not
(2,1)-extendable.



Theorem 6. Let C be an [n,5,d]3 code with
diversity (40,36), gcd(3,d) = 1. Then C is
(2,1)-extendable if A; < 50.

To prove this, we need:

(1) In (40,36)4 flat, any (10, 15)-solid has
the unique focal point from F7 and any (16,12)-
solid has the unique focal point from F5.

(2) Every 20-cap in PG(4,3) is either a M-cap
or A-cap.



3. Focal points and focal hyperplanes

For : = 1,2, a point P € Fj; is called a focal
point of a hyperplane H (or P is focal to H)

If the following three conditions hold:

(a) (P,Q) is a (0,2)-line for Q € F; N H,
(b) (P,Q) is a (2,1)-line for Q € F3_; N H,
(c) (P,Q) is a (1,6 — 3¢)-line for Q € Fo N H.



Such a hyperplane H is called a focal hyper-
plane of P (or H is focal to P).

Theorem 7

Let I; be a t-flat with new diversity. Then,
for : = 1,2, any point of Ny N F; has a focal
(a,b)-hyperplane in N; for some new (a,b).
Note.

Let (2,1) and (0,2) be new in the types of

lines for convenience.



O : apoint of Fo

O : apoint of F1

@ : apoint of F2
—/ \_/

1:(2,1)-1ine

(a) (P,Q) is a (0,2)-line for Q € F> N1
(b) (P,Q) is a (2,1)-line for Q € Fy N1
(c) (P,Q) is a (1,0)-line for QQ € Fop Nl



\

O : apoint of Fo

O : apoint of F1

@ : apoint of F2
—/ \_/

1:(2,1)-1ine
(a) (P,Q) is a (0,2)-line for Q € F> N1
(b) (P,Q) is a (2,1)-line for Q € Fy N1
(c) (P,Q) is a (1,0)-line for QQ € Fop Nl



\

O : apoint of Fo

O : apoint of F1

@ : apoint of F2
—/ \_/

1:(2,1)=1ine
(a) (P,Q) is a (0,2)-line for Q € F> N1
(b) (P,Q) is a (2,1)-line for Q € Fy N1
(c) (P,Q) is a (1,0)-line for QQ € Fop Nl



®
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(4,3)-plane O : apoint of Fo
O : apoint of F1
@® : apoint of F2

s

\
AN

(2, 1)
Q) is a (0,2)-line for Q € Fo N1
(b) (P,Q) is a (2,1)-line for Q € Fy N1
Q) is a (1,0)-line for Q € FynNl



Lemma 8. Let § be a (4,3)-plane. Then,
every point of 0N Fy and of é N F» has a focal
(0,2)-line and a focal (2,1)-line, respectively,

and vice versa.



O : apoint of Fo

O : apoint of F1
\ (4, 3)—plane

A, A

(0,2)-1line (2, 1)-line



O : apoint of Fo
O : apoint of Fi
@ : apoint of F2

|

0,2)-line

\

o

(0,2)-line

(4, 3)-plane

SRR

(2,1)-line

/\

/

\

.

5

(4, 6)-plane

(2,1)-line




Lemma 9. Let 6 be a (4,6)-plane. Then,
every point of 0N Fy and of é N F» has a focal
(2,1)-line and a focal (0, 2)-line, respectively,

and vice versa.



Lemma 10. Let § be a (16,12)-solid. Then,
every point of 0N Fy and of 0 N F» has a focal
(4,3)-plane and a focal (4,6)-plane, respec-

tively, and vice versa.






Lemma 11. Let 1 bea (40,36), flat. Then,
every point of NN Fy and of 1N F» has a
focal (10,15)-solid and a focal (16, 12)-solid,

respectively, and vice versa.



4. Proof of Theorem 6.

Assume C is not (2,1)-extendable. Then no
three points of F. are collinear by Theorem
5.

Fe forms a cap and we have |Fe| < 20 since
the largest size of a cap in PG(4,3) is 20.

Every 20-cap in PG(4,3) is either a M-cap or
a A-cap (Pellegrino, 1974).



H:hyperplane

[ -cap = U,}gl {two of ¢ € VP, }.



[4

Ci{,Co,Cq,Csq :4—arc

Tt -plane

/1 :<Cq, Co> M <Cs, Cq>

/2 :<Cy, C4> M <Coq C3>

/3 :<Cq, C3> M <C2, Cyg>

¢ 1line which skew to 7
Vi,Vo, Vs, Vs ipoint of ¢

O 71

A-cap = {eo} U {o} U {o} U {o} U {o}



We only consider the case when Fe Is a 20-
cap of type I'. (See Proceedings for the case

when F, is a 20-cap of type A.)



Case 1: V € F

v
.

VaaRaY

H:solid




Case 1. V€ Fp = VP, = (1,0)-line
\Y

R

2

H:solid

Actually, there are exactly six (1, 0)-lines through
V in the (40,36)4 flat >, a contradiction.



Case 2. V € Fy

v
|

SERRT

PZ PS P4 P5

H:solid



Case 2. Ve F; = VP, =(0,2)-line
V




H'’: the focal (10, 15)-solid of V
E'’: the projection of E from V onto H' if
H# H'



V is point of F; = VP, = (0,2)-line
Vv

O P9 P8
P 10 ca
2

H : (10, 15)-solid

In H', at most 0(3) + cﬁﬁg = 25 planes meet
E’ in four points, a contradiction.



Case 3. Ve Fr, = VP, = (1,0)-line
\Y




Thank you for your attention!



