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Overview

♣ The (2,1)-extendability of [n, k, d]3 codes

with gcd(3, d) = 1 is investigated geometri-

cally for 3 ≤ k ≤ 5.
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0. Introduction

C: [n, k, d]3 code, k ≥ 3, gcd(d,3) = 1.

The diversity (Φ0,Φ1) of C is given as

Φ0 =
1

2

∑
3|i,i̸=0

Ai, Φ1 =
1

2

∑
i̸≡0,d (mod 3)

Ai.



Dk = the set of all possible diversities of

[n, k, d]3 codes.

D∗
k = {(θk−2,0), (θk−3,2 · 3k−2),

(θk−2,2 · 3k−2), (θk−2 + 3k−2,3k−2)},
where θj = (3j+1 − 1)/2.

D+
k = Dk \ D∗

k.



Theorem 1 (Maruta, 2005).

C is extendable if (Φ0,Φ1) ∈ D∗
k.

Probrem.

Is C (2,1)-extendable when C is not extend-

able?

We consider this problem for 3 ≤ k ≤ 5.

(See Proceedings for k = 6)



Diversities of non-extendable ternary codes

k diversity

3 (4,3)
4 (13,9), (10,15), (16,12)
5 (40,27), (31,45), (40,36), (40,45), (49,36)
6 (121,81), (94,135), (121,108), (112,126),

(130,117), (121,135), (148,108)

How about (2,1)-extendability of such codes?



1. Geometric approach

C: [n, k, d]3 code, k ≥ 3

G = [g1, · · · , gk]
T: a generator matrix of C

Σ :=PG(k−1,3): the projective space of di-

mension k − 1 over F3

For P = P(p1, . . . , pk) ∈ Σ we define the weight

of P with respect to C, denoted by wC(P ), as

wC(P ) = wt(
k∑

i=1
pigi).



Let

Fd = {P ∈ Σ | wC(P ) = d},

F0 = {P ∈ Σ | wC(P ) ≡ 0 (mod 3)},

F1 = {P ∈ Σ | wC(P ) ̸≡ 0, d (mod 3)},

F2 = {P ∈ Σ | wC(P ) ≡ d (mod 3)} (⊃ Fd),

F = F0 ∪ F1, Fe = F2 \ Fd.

Then (Φ0,Φ1) = (|F0|, |F1|).



2. (2,1)-extendability of ternary linear

codes

Lemma 2. C is (2,1)-extendable

⇔ ∃(k − 3)-flat ⊂ F ∪ Fe

⇐ ∃(k − 3)-flat ⊂ F = F0 ∪ F1.

Every non-extendable [n,3, d]3 code C with

gcd(3, d) = 1 has diversity (4,3).

C is (2,1)-extendable since F ̸= ∅.



Πt : a t-flat in Σ.

The diversity of Πt is (φ0
(t), φ1

(t))

where φs
(t) = |Πt ∩ Fs|, s = 0,1.

Πt is called a (φ0
(t), φ1

(t))t flat.

(i, j)1 flats, (i, j)2 flats, (i, j)3 flats are called

(i, j)-lines, (i, j)-planes, (i, j)-solids,respectively.

c
(t)
i,j : the number of (i, j)t−1 flats in Πt.

The list of c
(t)
i,j ’s is called its spectrum.



Table 1.

φ0
(2) φ1

(2) c
(2)
1,0 c

(2)
0,2 c

(2)
2,1 c

(2)
1,3 c

(2)
4,0

4 0 12 0 0 0 1
1 6 2 9 0 2 0
4 3 4 3 6 0 0
4 6 0 3 6 4 0
7 3 1 0 9 1 2
4 9 0 0 0 12 1
13 0 0 0 0 0 13

∃(i, j)-line ⇒ ∃(3i + 1,3j)-plane.

(4,3) and (4,6) are new.



Table 2.

φ0
(3) φ1

(3) c
(3)
4,0 c

(3)
1,6 c

(3)
4,3 c

(3)
4,6 c

(3)
7,3 c

(3)
4,9 c

(3)
13,0

13 0 39 0 0 0 0 0 1
4 18 2 36 0 0 0 2 0
13 9 4 3 27 0 6 0 0
10 15 0 10 15 15 0 0 0
16 12 0 0 12 12 16 0 0
13 18 0 3 0 27 6 4 0
22 9 1 0 0 0 36 1 2
13 27 0 0 0 0 0 39 1
40 0 0 0 0 0 0 0 40



L

a point of  F0

a point of  F1

a point of  F



Theorem 3. Let C be an [n, k, d]3 code with

k = 3 or 4, gcd(3, d) = 1. Then C is (2,1)-

extendable.

Theorem 4. Let C be an [n,5, d]3 code with

diversity (Φ0,Φ1) ̸= (40,36), gcd(3, d) = 1.

Then C is (2,1)-extendable.



Table 3.

φ0
(4) φ1

(4) c
(4)
13,0 c

(4)
4,18 c

(4)
13,9 c

(4)
10,15 c

(4)
16,12 c

(4)
13,18 c

(4)
22,9 c

(4)
13,27 c

(4)
40,0

40 0 120 0 0 0 0 0 0 0 1
13 54 2 117 0 0 0 0 0 2 0
40 27 4 3 108 0 0 0 6 0 0
31 45 0 10 15 81 0 15 0 0 0
40 36 0 0 40 36 45 0 0 0 0
40 45 0 0 0 36 45 40 0 0 0
49 36 0 0 12 0 81 12 16 0 0
40 54 0 3 0 0 0 108 6 4 0
67 27 1 0 0 0 0 0 117 1 2
40 81 0 0 0 0 0 0 0 120 1
121 0 0 0 0 0 0 0 0 0 121



Theorem 5. Let C be an [n,5, d]3 code with

diversity (40,36), gcd(3, d) = 1.

Then C is (2,1)-extendable iff either

(a) ∃l:(1,0)-line, l ⊂ F0 ∪ Fe, or

(b) ∃R1, R2, R3 ∈ Fe s.t. ⟨Ri, Rj⟩:(0,2)-line.

(a) (b)
R1

R3R2



Example. Let C be a [15,5,8]3 code with a

generator matrix

G =



1 0 0 0 0 2 1 2 1 1 0 0 1 1 0
0 1 0 0 0 1 1 2 1 2 1 0 2 0 1
0 0 1 0 0 2 0 1 1 2 2 1 1 2 0
0 0 0 1 0 0 0 1 1 0 2 2 2 1 2
0 0 0 0 1 2 2 2 2 0 0 2 2 0 1


,

whose weight distribution is

0186094010621120124013101410 (diversity (40,36)).



(b)

R1=(0,0,1,1,1)

R3=(1,1,0,0,1)R2=(1,2,1,2,2)

Q1

Q2
Q3 Q4

Q5

Q6

wC(R1) = 11, wC(R2) = 14, wC(R3) = 11.

wC(Ri) ≡ 2 ≡ d = 8 (mod 3).

wC(Q1) = 10, wC(Q2) = 10 · · · . wC(Qj) ≡ 1 (mod 3).



Since V (x0 + 2x1 + 2x2 + x3) ∩ V (x0 + x2 + 2x4) =

⟨R1, R2, R3⟩, by adding the columns (1,2,2,1,0)T and

(1,0,1,0,2)T to G, we get a (2,1)-extension of C

whose weight distribution is

0193810561146123413301426158164.

Remark.

We have no example of an [n,5, d]3 code with

diversity (40,36), gcd(3, d) = 1, which is not

(2,1)-extendable.



Theorem 6. Let C be an [n,5, d]3 code with

diversity (40,36), gcd(3, d) = 1. Then C is

(2,1)-extendable if Ad ≤ 50.

To prove this, we need:

(1) In (40,36)4 flat, any (10,15)-solid has

the unique focal point from F1 and any (16,12)-

solid has the unique focal point from F2.

(2) Every 20-cap in PG(4,3) is either a Γ-cap

or ∆-cap.



3. Focal points and focal hyperplanes

For i = 1,2, a point P ∈ Fi is called a focal

point of a hyperplane H (or P is focal to H)

if the following three conditions hold:

(a) ⟨P, Q⟩ is a (0,2)-line for Q ∈ Fi ∩ H,

(b) ⟨P, Q⟩ is a (2,1)-line for Q ∈ F3−i ∩ H,

(c) ⟨P, Q⟩ is a (1,6 − 3i)-line for Q ∈ F0 ∩ H.



Such a hyperplane H is called a focal hyper-

plane of P (or H is focal to P ).

Theorem 7

Let Πt be a t-flat with new diversity. Then,

for i = 1,2, any point of Πt ∩ Fi has a focal

(a, b)-hyperplane in Πt for some new (a, b).

Note.

Let (2,1) and (0,2) be new in the types of

lines for convenience.



a point of  F0

a point of  F1

a point of  F

(a) ⟨P, Q⟩ is a (0,2)-line for Q ∈ F2 ∩ l

(b) ⟨P, Q⟩ is a (2,1)-line for Q ∈ F1 ∩ l

(c) ⟨P, Q⟩ is a (1,0)-line for Q ∈ F0 ∩ l



a point of  F0

a point of  F1

a point of  F

(a) ⟨P, Q⟩ is a (0,2)-line for Q ∈ F2 ∩ l

(b) ⟨P, Q⟩ is a (2,1)-line for Q ∈ F1 ∩ l

(c) ⟨P, Q⟩ is a (1,0)-line for Q ∈ F0 ∩ l



a point of  F0

a point of  F1

a point of  F

(a) ⟨P, Q⟩ is a (0,2)-line for Q ∈ F2 ∩ l

(b) ⟨P, Q⟩ is a (2,1)-line for Q ∈ F1 ∩ l

(c) ⟨P, Q⟩ is a (1,0)-line for Q ∈ F0 ∩ l



a point of  F0

a point of  F1

a point of  F

(a) ⟨P, Q⟩ is a (0,2)-line for Q ∈ F2 ∩ l

(b) ⟨P, Q⟩ is a (2,1)-line for Q ∈ F1 ∩ l

(c) ⟨P, Q⟩ is a (1,0)-line for Q ∈ F0 ∩ l



Lemma 8. Let δ be a (4,3)-plane. Then,

every point of δ∩F1 and of δ∩F2 has a focal

(0,2)-line and a focal (2,1)-line, respectively,

and vice versa.



a point of  F0

a point of  F1

a point of  F



a point of  F0

a point of  F1

a point of  F



Lemma 9. Let δ be a (4,6)-plane. Then,

every point of δ∩F1 and of δ∩F2 has a focal

(2,1)-line and a focal (0,2)-line, respectively,

and vice versa.



Lemma 10. Let δ be a (16,12)-solid. Then,

every point of δ∩F1 and of δ∩F2 has a focal

(4,3)-plane and a focal (4,6)-plane, respec-

tively, and vice versa.





Lemma 11. Let Π be a (40,36)4 flat. Then,

every point of Π ∩ F1 and of Π ∩ F2 has a

focal (10,15)-solid and a focal (16,12)-solid,

respectively, and vice versa.



4. Proof of Theorem 6.

Assume C is not (2,1)-extendable. Then no

three points of Fe are collinear by Theorem

5.

Fe forms a cap and we have |Fe| ≤ 20 since

the largest size of a cap in PG(4,3) is 20.

Every 20-cap in PG(4,3) is either a Γ-cap or

a ∆-cap (Pellegrino, 1974).



Γ-cap = ∪10
i=1 { two of ● ∈ V Pi }.



l

l

l

∆-cap = { } ∪ { } ∪ { } ∪ { } ∪ { }



We only consider the case when Fe is a 20-

cap of type Γ. (See Proceedings for the case

when Fe is a 20-cap of type ∆.)



Case 1: V ∈ F0

Actually, there are exactly six (1,0)-lines through

V in the (40,36)4 flat Σ, a contradiction.



Case 1: V ∈ F0 ⇒ V Pi = (1,0)-line

Actually, there are exactly six (1,0)-lines through

V in the (40,36)4 flat Σ, a contradiction.



Case 2: V ∈ F1



Case 2: V ∈ F1 ⇒ V Pi = (0,2)-line



H ′: the focal (10,15)-solid of V

E′: the projection of E from V onto H ′ if

H ̸= H ′.



V is point of F1 ⇒ V Pi = (0,2)-line

In H ′, at most c
(3)
1,6 + c

(3)
4,6 = 25 planes meet

E′ in four points, a contradiction.



Case 3: V ∈ F2 ⇒ V Pi = (1,0)-line



Thank you for your attention!


