On the (2,1)-extendability of ternary linear codes

Yuri Yoshida
(Joint work with Tatsuya Maruta)

Department of Mathematics
and Information Sciences
Osaka Prefecture University

Overview

\% The $(2,1)$-extendability of $[n, k, d]_{3}$ codes with $\operatorname{gcd}(3, d)=1$ is investigated geometrically for $3 \leq k \leq 5$.

Contents

0. Introduction
1. Geometric approach
2. $(2,1)$-extendability of ternary linear codes
3. Focal points and focal hyperplanes
4. Proof of Theorem 6

0. Introduction

$\mathcal{C}:[n, k, d]_{3} \operatorname{code}, k \geq 3, \operatorname{gcd}(d, 3)=1$.
The diversity $\left(\Phi_{0}, \Phi_{1}\right)$ of \mathcal{C} is given as

$$
\Phi_{0}=\frac{1}{2} \sum_{3 \mid i, i \neq 0} A_{i}, \quad \Phi_{1}=\frac{1}{2} \sum_{i \neq 0, d} \sum_{(\bmod 3)} A_{i} .
$$

$\mathcal{D}_{k}=$ the set of all possible diversities of [$n, k, d]_{3}$ codes.

$$
\begin{aligned}
\mathcal{D}_{k}^{*}=\{ & \left(\theta_{k-2}, 0\right),\left(\theta_{k-3}, 2 \cdot 3^{k-2}\right) \\
& \left.\left(\theta_{k-2}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)\right\},
\end{aligned}
$$

where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.
$\mathcal{D}_{k}^{+}=\mathcal{D}_{k} \backslash \mathcal{D}_{k}^{*}$.

Theorem 1 (Maruta, 2005).
\mathcal{C} is extendable if $\left(\Phi_{0}, \Phi_{1}\right) \in \mathcal{D}_{k}^{*}$.

Probrem.

Is $\mathcal{C}(2,1)$-extendable when \mathcal{C} is not extendable?

We consider this problem for $3 \leq k \leq 5$.
(See Proceedings for $k=6$)

Diversities of non-extendable ternary codes

k	diversity
3	$(4,3)$
4	$(13,9),(10,15),(16,12)$
5	$(40,27),(31,45),(40,36),(40,45),(49,36)$
6	$(121,81),(94,135),(121,108),(112,126)$,
	$(130,117),(121,135),(148,108)$

How about $(2,1)$-extendability of such codes?

1. Geometric approach

$\mathcal{C}:[n, k, d]_{3}$ code, $k \geq 3$
$G=\left[g_{1}, \cdots, g_{k}\right]^{\top}$: a generator matrix of \mathcal{C}
$\Sigma:=\mathrm{PG}(k-1,3)$: the projective space of dimension $k-1$ over \mathbb{F}_{3}
For $P=\mathrm{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma$ we define the weight of P with respect to \mathcal{C}, denoted by $w_{\mathcal{C}}(P)$, as

$$
w_{\mathcal{C}}(P)=w t\left(\sum_{i=1}^{k} p_{i} g_{i}\right)
$$

Let

$$
\begin{aligned}
F_{d} & =\left\{P \in \Sigma \mid w_{\mathcal{C}}(P)=d\right\} \\
F_{0} & =\left\{P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv 0 \quad(\bmod 3)\right\} \\
F_{1} & =\left\{P \in \Sigma \mid w_{\mathcal{C}}(P) \not \equiv 0, d(\bmod 3)\right\} \\
F_{2} & =\left\{P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv d(\bmod 3)\right\}\left(\supset F_{d}\right) \\
F & =F_{0} \cup F_{1}, F_{e}=F_{2} \backslash F_{d}
\end{aligned}
$$

Then $\left(\Phi_{0}, \Phi_{1}\right)=\left(\left|F_{0}\right|,\left|F_{1}\right|\right)$.

2. (2,1)-extendability of ternary linear

codes

Lemma 2. \mathcal{C} is (2, 1)-extendable
$\Leftrightarrow \exists(k-3)$-flat $\subset F \cup F_{e}$
$\Leftarrow \exists(k-3)$-flat $\subset F=F_{0} \cup F_{1}$.

Every non-extendable $[n, 3, d]_{3}$ code \mathcal{C} with $\operatorname{gcd}(3, d)=1$ has diversity $(4,3)$.
\mathcal{C} is $(2,1)$-extendable since $F \neq \emptyset$.
Π_{t} : a t-flat in Σ.
The diversity of Π_{t} is $\left(\varphi_{0}{ }^{(t)}, \varphi_{1}{ }^{(t)}\right)$

$$
\text { where } \varphi_{s}{ }^{(t)}=\left|\Pi_{t} \cap F_{s}\right|, s=0,1
$$

Π_{t} is called a $\left(\varphi_{0}{ }^{(t)}, \varphi_{1}{ }^{(t)}\right)_{t}$ flat.
$(i, j)_{1}$ flats, $(i, j)_{2}$ flats, $(i, j)_{3}$ flats are called
(i, j)-lines, $(i, j$)-planes, (i, j)-solids, respectively.
$c_{i, j}^{(t)}$: the number of $(i, j)_{t-1}$ flats in Π_{t}.
The list of $c_{i, j}^{(t)}$'s is called its spectrum.

Table 1.

$\varphi_{0}{ }^{(2)}$	$\varphi_{1}{ }^{(2)}$	$c_{1,0}^{(2)}$	$c_{0,2}^{(2)}$	$c_{2,1}^{(2)}$	$c_{1,3}^{(2)}$	$c_{4,0}^{(2)}$
4	0	12	0	0	0	1
1	6	2	9	0	2	0
4	3	4	3	6	0	0
4	6	0	3	6	4	0
7	3	1	0	9	1	2
4	9	0	0	0	12	1
13	0	0	0	0	0	13

$\exists(i, j)$-line $\Rightarrow \exists(3 i+1,3 j)$-plane.
$(4,3)$ and $(4,6)$ are new.

Table 2.

$\varphi_{0}^{(3)}$	$\varphi_{1}(3)$	$c_{4,0}^{(3)}$	$c_{1,6}^{(3)}$	$c_{4,3}^{(3)}$	$c_{4,6}^{(3)}$	$c_{7,3}^{(3)}$	$c_{4,9}^{(3)}$	$c_{13,0}^{(3)}$
13	0	39	0	0	0	0	0	1
4	18	2	36	0	0	0	2	0
13	9	4	3	27	0	6	0	0
10	15	0	10	15	15	0	0	0
16	12	0	0	12	12	16	0	0
13	18	0	3	0	27	6	4	0
22	9	1	0	0	0	36	1	2
13	27	0	0	0	0	0	39	1
40	0	0	0	0	0	0	0	40

$(4,3)$-plane

$(13,9)$-solid

Theorem 3. Let \mathcal{C} be an $[n, k, d]_{3}$ code with $k=3$ or $4, \operatorname{gcd}(3, d)=1$. Then \mathcal{C} is $(2,1)$ extendable.

Theorem 4. Let \mathcal{C} be an $[n, 5, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right) \neq(40,36), \operatorname{gcd}(3, d)=1$. Then \mathcal{C} is $(2,1)$-extendable.

Table 3.

$\varphi_{0}{ }^{(4)}$	$\varphi_{1}{ }^{(4)}$	$c_{13,0}^{(4)}$	$c_{4,18}^{(4)}$	$c_{13,9}^{(4)}$	$c_{10,15}^{(4)}$	$c_{16,12}^{(4)}$	$c_{13,18}^{(4)}$	$c_{22,9}^{(4)}$	$c_{13,27}^{(4)}$	$c_{40,0}^{(4)}$
40	0	120	0	0	0	0	0	0	0	1
13	54	2	117	0	0	0	0	0	2	0
40	27	4	3	108	0	0	0	6	0	0
31	45	0	10	15	81	0	15	0	0	0
40	36	0	0	40	36	45	0	0	0	0
40	45	0	0	0	36	45	40	0	0	0
49	36	0	0	12	0	81	12	16	0	0
40	54	0	3	0	0	0	108	6	4	0
67	27	1	0	0	0	0	0	117	1	2
40	81	0	0	0	0	0	0	0	120	1
121	0	0	0	0	0	0	0	0	0	121

Theorem 5. Let \mathcal{C} be an $[n, 5, d]_{3}$ code with diversity $(40,36), \operatorname{gcd}(3, d)=1$.
Then \mathcal{C} is $(2,1)$-extendable iff either (a) $\exists l:(1,0)$-line, $l \subset F_{0} \cup F_{e}$, or
(b) $\exists R_{1}, R_{2}, R_{3} \in F_{e}$ s.t. $\left\langle R_{i}, R_{j}\right\rangle:(0,2)$-line.
(a)

Example. Let \mathcal{C} be a $[15,5,8]_{3}$ code with a generator matrix

$$
G=\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 2 & 1 & 0 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 2 & 0 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 2 & 2 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 0 & 0 & 2 & 2 & 0 & 1
\end{array}\right],
$$

whose weight distribution is
$0^{1} 8^{60} 9^{40} 10^{62} 11^{20} 12^{40} 13^{10} 14^{10}$ (diversity $(40,36)$).

Since $V\left(x_{0}+2 x_{1}+2 x_{2}+x_{3}\right) \cap V\left(x_{0}+x_{2}+2 x_{4}\right)=$ $\left\langle R_{1}, R_{2}, R_{3}\right\rangle$, by adding the columns $(1,2,2,1,0)^{\top}$ and $(1,0,1,0,2)^{\top}$ to G, we get a $(2,1)$-extension of \mathcal{C} whose weight distribution is

$$
0^{1} 9^{38} 10^{56} 11^{46} 12^{34} 13^{30} 14^{26} 15^{8} 16^{4}
$$

Remark.
We have no example of an $[n, 5, d]_{3}$ code with diversity $(40,36), \operatorname{gcd}(3, d)=1$, which is not $(2,1)$-extendable.

Theorem 6. Let \mathcal{C} be an $[n, 5, d]_{3}$ code with diversity $(40,36), \operatorname{gcd}(3, d)=1$. Then \mathcal{C} is $(2,1)$-extendable if $A_{d} \leq 50$.

To prove this, we need:
(1) In $(40,36)_{4}$ flat, any $(10,15)$-solid has the unique focal point from F_{1} and any $(16,12)$ solid has the unique focal point from F_{2}.
(2) Every 20-cap in $\operatorname{PG}(4,3)$ is either a Γ-cap or Δ-cap.

3. Focal points and focal hyperplanes

For $i=1,2$, a point $P \in F_{i}$ is called a focal point of a hyperplane H (or P is focal to H) if the following three conditions hold:
(a) $\langle P, Q\rangle$ is a (0,2)-line for $Q \in F_{i} \cap H$,
(b) $\langle P, Q\rangle$ is a $(2,1)$-line for $Q \in F_{3-i} \cap H$,
(c) $\langle P, Q\rangle$ is a (1,6-3i)-line for $Q \in F_{0} \cap H$.

Such a hyperplane H is called a focal hyperplane of P (or H is focal to P).

Theorem 7

Let Π_{t} be a t-flat with new diversity. Then, for $i=1,2$, any point of $\Pi_{t} \cap F_{i}$ has a focal (a, b)-hyperplane in Π_{t} for some new (a, b). Note.
Let $(2,1)$ and $(0,2)$ be new in the types of lines for convenience.

(a) $\langle P, Q\rangle$ is a (0,2)-line for $Q \in F_{2} \cap l$ (b) $\langle P, Q\rangle$ is a $(2,1)$-line for $Q \in F_{1} \cap l$
(c) $\langle P, Q\rangle$ is a $(1,0)$-line for $Q \in F_{0} \cap l$

(a) $\langle P, Q\rangle$ is a $(0,2)$-line for $Q \in F_{2} \cap l$ (b) $\langle P, Q\rangle$ is a $(2,1)$-line for $Q \in F_{1} \cap l$
(c) $\langle P, Q\rangle$ is a $(1,0)$-line for $Q \in F_{0} \cap l$

(a) $\langle P, Q\rangle$ is a $(0,2)$-line for $Q \in F_{2} \cap l$ (b) $\langle P, Q\rangle$ is a $(2,1)$-line for $Q \in F_{1} \cap l$
(c) $\langle P, Q\rangle$ is a $(1,0)$-line for $Q \in F_{0} \cap l$

(a) $\langle P, Q\rangle$ is a $(0,2)$-line for $Q \in F_{2} \cap l$ (b) $\langle P, Q\rangle$ is a $(2,1)$-line for $Q \in F_{1} \cap l$
(c) $\langle P, Q\rangle$ is a $(1,0)$-line for $Q \in F_{0} \cap l$

Lemma 8. Let δ be a (4,3)-plane. Then, every point of $\delta \cap F_{1}$ and of $\delta \cap F_{2}$ has a focal (0,2)-line and a focal (2,1)-line, respectively, and vice versa.

Lemma 9. Let δ be a $(4,6)$-plane. Then, every point of $\delta \cap F_{1}$ and of $\delta \cap F_{2}$ has a focal $(2,1)$-line and a focal (0,2)-line, respectively, and vice versa.

Lemma 10. Let δ be a $(16,12)$-solid. Then, every point of $\delta \cap F_{1}$ and of $\delta \cap F_{2}$ has a focal $(4,3)$-plane and a focal $(4,6)$-plane, respectively, and vice versa.

$(4,3)$-plane
$(16,12)$-solid

$(4,6)$-plane

Lemma 11. Let Π be a $(40,36)_{4}$ flat. Then, every point of $\Pi \cap F_{1}$ and of $\Pi \cap F_{2}$ has a focal (10,15)-solid and a focal (16,12)-solid, respectively, and vice versa.

4. Proof of Theorem 6.

Assume \mathcal{C} is not $(2,1)$-extendable. Then no three points of F_{e} are collinear by Theorem 5.
F_{e} forms a cap and we have $\left|F_{e}\right| \leq 20$ since the largest size of a cap in $P G(4,3)$ is 20.

Every 20-cap in $\operatorname{PG}(4,3)$ is either a Γ-cap or a Δ-cap (Pellegrino, 1974).

$$
\Gamma-c a p=\cup_{i=1}^{10}\left\{\text { two of } \Theta \in V P_{i}\right\}
$$

$\Delta-c a p=\{\bullet\} \cup\{\bullet\} \cup\{\bullet\} \cup\{\bullet\} \cup\{\bullet\}$

We only consider the case when F_{e} is a 20cap of type Г. (See Proceedings for the case when F_{e} is a 20-cap of type Δ.)

Case 1: $V \in F_{0} \Rightarrow V P_{i}=(1,0)$-line

Actually, there are exactly six (1, 0)-lines through V in the $(40,36)_{4}$ flat Σ, a contradiction.

Case 2: $V \in F_{1}$

Case 2: $V \in F_{1} \Rightarrow V P_{i}=(0,2)$-line

H^{\prime} : the focal $(10,15)$-solid of V
E^{\prime} : the projection of E from V onto H^{\prime} if $H \neq H^{\prime}$.
V is point of $F_{1} \Rightarrow V P_{i}=(0,2)$-line

In H^{\prime}, at most $c_{1,6}^{(3)}+c_{4,6}^{(3)}=25$ planes meet E^{\prime} in four points, a contradiction.

H

Thank you for your attention!

